Copied to
clipboard

G = C4210Q8order 128 = 27

10th semidirect product of C42 and Q8 acting via Q8/C2=C22

p-group, metabelian, nilpotent (class 2), monomial, rational

Aliases: C4210Q8, C42.197D4, C23.560C24, C22.2502- (1+4), C22.3342+ (1+4), C4.9(C4⋊Q8), C424C4.28C2, C428C4.40C2, C429C4.36C2, (C2×C42).624C22, (C22×C4).859C23, C22.372(C22×D4), C22.138(C22×Q8), (C22×Q8).167C22, C2.48(C22.29C24), C23.78C23.16C2, C2.C42.274C22, C23.81C23.29C2, C2.25(C23.41C23), C2.48(C23.38C23), C2.20(C2×C4⋊Q8), (C2×C4⋊Q8).37C2, (C2×C4).406(C2×D4), (C2×C4).135(C2×Q8), (C2×C4⋊C4).383C22, (C2×C42.C2).25C2, SmallGroup(128,1392)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C4210Q8
C1C2C22C23C22×C4C2×C4⋊C4C429C4 — C4210Q8
C1C23 — C4210Q8
C1C23 — C4210Q8
C1C23 — C4210Q8

Subgroups: 388 in 224 conjugacy classes, 116 normal (16 characteristic)
C1, C2 [×3], C2 [×4], C4 [×4], C4 [×20], C22, C22 [×6], C2×C4 [×18], C2×C4 [×36], Q8 [×8], C23, C42 [×12], C4⋊C4 [×28], C22×C4 [×3], C22×C4 [×12], C2×Q8 [×8], C2.C42 [×12], C2×C42, C2×C42 [×2], C2×C4⋊C4 [×2], C2×C4⋊C4 [×16], C42.C2 [×4], C4⋊Q8 [×4], C22×Q8 [×2], C424C4, C428C4 [×2], C429C4 [×2], C23.78C23 [×4], C23.81C23 [×4], C2×C42.C2, C2×C4⋊Q8, C4210Q8

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], Q8 [×8], C23 [×15], C2×D4 [×6], C2×Q8 [×12], C24, C4⋊Q8 [×4], C22×D4, C22×Q8 [×2], 2+ (1+4) [×2], 2- (1+4) [×2], C2×C4⋊Q8, C22.29C24, C23.38C23, C23.41C23 [×4], C4210Q8

Generators and relations
 G = < a,b,c,d | a4=b4=c4=1, d2=c2, ab=ba, cac-1=a-1b2, dad-1=ab2, cbc-1=b-1, bd=db, dcd-1=c-1 >

Smallest permutation representation
Regular action on 128 points
Generators in S128
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 25 65 30)(2 26 66 31)(3 27 67 32)(4 28 68 29)(5 48 125 41)(6 45 126 42)(7 46 127 43)(8 47 128 44)(9 84 14 52)(10 81 15 49)(11 82 16 50)(12 83 13 51)(17 60 22 92)(18 57 23 89)(19 58 24 90)(20 59 21 91)(33 117 40 122)(34 118 37 123)(35 119 38 124)(36 120 39 121)(53 93 85 106)(54 94 86 107)(55 95 87 108)(56 96 88 105)(61 114 80 109)(62 115 77 110)(63 116 78 111)(64 113 79 112)(69 100 74 101)(70 97 75 102)(71 98 76 103)(72 99 73 104)
(1 125 117 75)(2 8 118 69)(3 127 119 73)(4 6 120 71)(5 122 70 65)(7 124 72 67)(9 24 85 63)(10 18 86 77)(11 22 87 61)(12 20 88 79)(13 21 56 64)(14 19 53 78)(15 23 54 62)(16 17 55 80)(25 48 40 97)(26 44 37 101)(27 46 38 99)(28 42 39 103)(29 45 36 98)(30 41 33 102)(31 47 34 100)(32 43 35 104)(49 57 94 110)(50 92 95 114)(51 59 96 112)(52 90 93 116)(58 106 111 84)(60 108 109 82)(66 128 123 74)(68 126 121 76)(81 89 107 115)(83 91 105 113)
(1 81 117 107)(2 50 118 95)(3 83 119 105)(4 52 120 93)(5 110 70 57)(6 116 71 90)(7 112 72 59)(8 114 69 92)(9 39 85 28)(10 33 86 30)(11 37 87 26)(12 35 88 32)(13 38 56 27)(14 36 53 29)(15 40 54 25)(16 34 55 31)(17 47 80 100)(18 41 77 102)(19 45 78 98)(20 43 79 104)(21 46 64 99)(22 44 61 101)(23 48 62 97)(24 42 63 103)(49 122 94 65)(51 124 96 67)(58 126 111 76)(60 128 109 74)(66 82 123 108)(68 84 121 106)(73 91 127 113)(75 89 125 115)

G:=sub<Sym(128)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,25,65,30)(2,26,66,31)(3,27,67,32)(4,28,68,29)(5,48,125,41)(6,45,126,42)(7,46,127,43)(8,47,128,44)(9,84,14,52)(10,81,15,49)(11,82,16,50)(12,83,13,51)(17,60,22,92)(18,57,23,89)(19,58,24,90)(20,59,21,91)(33,117,40,122)(34,118,37,123)(35,119,38,124)(36,120,39,121)(53,93,85,106)(54,94,86,107)(55,95,87,108)(56,96,88,105)(61,114,80,109)(62,115,77,110)(63,116,78,111)(64,113,79,112)(69,100,74,101)(70,97,75,102)(71,98,76,103)(72,99,73,104), (1,125,117,75)(2,8,118,69)(3,127,119,73)(4,6,120,71)(5,122,70,65)(7,124,72,67)(9,24,85,63)(10,18,86,77)(11,22,87,61)(12,20,88,79)(13,21,56,64)(14,19,53,78)(15,23,54,62)(16,17,55,80)(25,48,40,97)(26,44,37,101)(27,46,38,99)(28,42,39,103)(29,45,36,98)(30,41,33,102)(31,47,34,100)(32,43,35,104)(49,57,94,110)(50,92,95,114)(51,59,96,112)(52,90,93,116)(58,106,111,84)(60,108,109,82)(66,128,123,74)(68,126,121,76)(81,89,107,115)(83,91,105,113), (1,81,117,107)(2,50,118,95)(3,83,119,105)(4,52,120,93)(5,110,70,57)(6,116,71,90)(7,112,72,59)(8,114,69,92)(9,39,85,28)(10,33,86,30)(11,37,87,26)(12,35,88,32)(13,38,56,27)(14,36,53,29)(15,40,54,25)(16,34,55,31)(17,47,80,100)(18,41,77,102)(19,45,78,98)(20,43,79,104)(21,46,64,99)(22,44,61,101)(23,48,62,97)(24,42,63,103)(49,122,94,65)(51,124,96,67)(58,126,111,76)(60,128,109,74)(66,82,123,108)(68,84,121,106)(73,91,127,113)(75,89,125,115)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,25,65,30)(2,26,66,31)(3,27,67,32)(4,28,68,29)(5,48,125,41)(6,45,126,42)(7,46,127,43)(8,47,128,44)(9,84,14,52)(10,81,15,49)(11,82,16,50)(12,83,13,51)(17,60,22,92)(18,57,23,89)(19,58,24,90)(20,59,21,91)(33,117,40,122)(34,118,37,123)(35,119,38,124)(36,120,39,121)(53,93,85,106)(54,94,86,107)(55,95,87,108)(56,96,88,105)(61,114,80,109)(62,115,77,110)(63,116,78,111)(64,113,79,112)(69,100,74,101)(70,97,75,102)(71,98,76,103)(72,99,73,104), (1,125,117,75)(2,8,118,69)(3,127,119,73)(4,6,120,71)(5,122,70,65)(7,124,72,67)(9,24,85,63)(10,18,86,77)(11,22,87,61)(12,20,88,79)(13,21,56,64)(14,19,53,78)(15,23,54,62)(16,17,55,80)(25,48,40,97)(26,44,37,101)(27,46,38,99)(28,42,39,103)(29,45,36,98)(30,41,33,102)(31,47,34,100)(32,43,35,104)(49,57,94,110)(50,92,95,114)(51,59,96,112)(52,90,93,116)(58,106,111,84)(60,108,109,82)(66,128,123,74)(68,126,121,76)(81,89,107,115)(83,91,105,113), (1,81,117,107)(2,50,118,95)(3,83,119,105)(4,52,120,93)(5,110,70,57)(6,116,71,90)(7,112,72,59)(8,114,69,92)(9,39,85,28)(10,33,86,30)(11,37,87,26)(12,35,88,32)(13,38,56,27)(14,36,53,29)(15,40,54,25)(16,34,55,31)(17,47,80,100)(18,41,77,102)(19,45,78,98)(20,43,79,104)(21,46,64,99)(22,44,61,101)(23,48,62,97)(24,42,63,103)(49,122,94,65)(51,124,96,67)(58,126,111,76)(60,128,109,74)(66,82,123,108)(68,84,121,106)(73,91,127,113)(75,89,125,115) );

G=PermutationGroup([(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,25,65,30),(2,26,66,31),(3,27,67,32),(4,28,68,29),(5,48,125,41),(6,45,126,42),(7,46,127,43),(8,47,128,44),(9,84,14,52),(10,81,15,49),(11,82,16,50),(12,83,13,51),(17,60,22,92),(18,57,23,89),(19,58,24,90),(20,59,21,91),(33,117,40,122),(34,118,37,123),(35,119,38,124),(36,120,39,121),(53,93,85,106),(54,94,86,107),(55,95,87,108),(56,96,88,105),(61,114,80,109),(62,115,77,110),(63,116,78,111),(64,113,79,112),(69,100,74,101),(70,97,75,102),(71,98,76,103),(72,99,73,104)], [(1,125,117,75),(2,8,118,69),(3,127,119,73),(4,6,120,71),(5,122,70,65),(7,124,72,67),(9,24,85,63),(10,18,86,77),(11,22,87,61),(12,20,88,79),(13,21,56,64),(14,19,53,78),(15,23,54,62),(16,17,55,80),(25,48,40,97),(26,44,37,101),(27,46,38,99),(28,42,39,103),(29,45,36,98),(30,41,33,102),(31,47,34,100),(32,43,35,104),(49,57,94,110),(50,92,95,114),(51,59,96,112),(52,90,93,116),(58,106,111,84),(60,108,109,82),(66,128,123,74),(68,126,121,76),(81,89,107,115),(83,91,105,113)], [(1,81,117,107),(2,50,118,95),(3,83,119,105),(4,52,120,93),(5,110,70,57),(6,116,71,90),(7,112,72,59),(8,114,69,92),(9,39,85,28),(10,33,86,30),(11,37,87,26),(12,35,88,32),(13,38,56,27),(14,36,53,29),(15,40,54,25),(16,34,55,31),(17,47,80,100),(18,41,77,102),(19,45,78,98),(20,43,79,104),(21,46,64,99),(22,44,61,101),(23,48,62,97),(24,42,63,103),(49,122,94,65),(51,124,96,67),(58,126,111,76),(60,128,109,74),(66,82,123,108),(68,84,121,106),(73,91,127,113),(75,89,125,115)])

Matrix representation G ⊆ GL8(𝔽5)

42000000
41000000
00310000
00020000
00002000
00000200
00001030
00004003
,
10000000
01000000
00100000
00010000
00004300
00001100
00000212
00004344
,
20000000
23000000
00100000
00440000
00001200
00000400
00000343
00000201
,
13000000
14000000
00400000
00040000
00002020
00000033
00001030
00004220

G:=sub<GL(8,GF(5))| [4,4,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,2,0,1,4,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,1,0,4,0,0,0,0,3,1,2,3,0,0,0,0,0,0,1,4,0,0,0,0,0,0,2,4],[2,2,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,1,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,4,3,2,0,0,0,0,0,0,4,0,0,0,0,0,0,0,3,1],[1,1,0,0,0,0,0,0,3,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,2,0,1,4,0,0,0,0,0,0,0,2,0,0,0,0,2,3,3,2,0,0,0,0,0,3,0,0] >;

32 conjugacy classes

class 1 2A···2G4A4B4C4D4E···4P4Q···4X
order12···244444···44···4
size11···122224···48···8

32 irreducible representations

dim111111112244
type+++++++++-+-
imageC1C2C2C2C2C2C2C2D4Q82+ (1+4)2- (1+4)
kernelC4210Q8C424C4C428C4C429C4C23.78C23C23.81C23C2×C42.C2C2×C4⋊Q8C42C42C22C22
# reps112244114822

In GAP, Magma, Sage, TeX

C_4^2\rtimes_{10}Q_8
% in TeX

G:=Group("C4^2:10Q8");
// GroupNames label

G:=SmallGroup(128,1392);
// by ID

G=gap.SmallGroup(128,1392);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,224,253,456,758,723,184,185,80]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^4=1,d^2=c^2,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d^-1=a*b^2,c*b*c^-1=b^-1,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽